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Exponential decay of chaotically advected passive scalars in the zero diffusivity limit
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The time asymptotic decay of the variance of a passive scalar in a chaotic flow is studied. Two mechanisms
for this decay, which involve processes at short and long length scales, respectively, are considered. The
validity of the short length scale mechanism, which is based on Lagrangian stretching theory, is discussed. We
also investigate the regimes of applicability and observable signatures of the two mechanisms. Supporting
evidence is provided by high resolution numerical experiments.
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I. INTRODUCTION AND BACKGROUND take the spatial average gfto be zero/ ¢(x,t)dx=0.

There has been much recent interest in the problem of As shown in the paper by Pierrehumbeétf and other

passive scalar advection in chaotic fluid flows. In particularSUbsequent studig@,5-7,11-13 for sufficiently long time

much interest has focused on the time asymptotic decay ’tEis situation results in a “strange eigenfunction” in which
Yhe scalar variance decays exponentially in tifwariance

Pisms.for his decay have been proposed and diseussgg® =01, Furthermorefhe rate of this exponenial de-
[2,6-12,15. It is the purpose of the present paper to inves-cay y(K).bec.omes independent of the diffusion coefficient
tigate the validity and regimes of applicability of two of as the diffusion becomes small

these mechanisms, one in which the damping is determined lim (k) = y,> 0, 2

by processes occurring at short length scifsand one in x—0"

which the damping is determined by processes taking place .

at the longest possible scd&7,11,12 (i.e., that determined and depends_only on properties of the fiow.

by the spatial extent of the fluid its@lfWe note that the The_ quantity y, is the foqus of the present paper. Two
validity of the short length scale mechanism has been que¥€"Y different types of physical mechanisms have been ad-
tioned[8,12,15. In the rest of this section we provide further Vanced as possible candidates determinjgg\We refer to

introductory background and discussion, and then summariZ2€se mecbamsmﬂs as being either a “short "wavelen_gth
the organization of the paper. mechanism” or a “long wavelength mechanism.” Our main

point in this paper is that both types of mechanisms are valid

. , ) ) in the sense that there are regimes where one applies, and

A. The damping rate pf passive scala_r variance in the strange  there are other regimes where the other appliesese two

eigenfunction regime mechanisms are not the only possible cases, as variance

We consider a passive scalar field subjected simultadamping whose rate is determined by the presence of

neously to diffusion and to advection by a spatially smooth Kolmogorov—Arnold—Moser surfacg$], or by the presence

mono-scale, fully chaotic flow in the absence of both source®f impenetrable boundari¢0] has also been studied. These

and sinks of the scalar. Denoting the scalar fielddgy,t), are fundamentally different from the two types of mechanism

the fluid velocity field byv(x,t) (assumed incompressihle We consider here in that they do not satisfy E2), i.e., at

and the molecular diffusion coefficient by, we have that Small x the damping due to these mechanisms approaches

¢(x,t) obeys the advection-diffusion equation, zero with «.)
dplat+v - V ¢p=kV2e, (1) B. The short wavelength mechanism
and the initial fielde(x,0) is specified. In what follows we 1. Lagrangian stretching theory

shall be interested in the case of smallFor simplicity, we
will henceforth restrict attention to the case of two-
dimensional flows/(x,t) =[v(X,y,t),vy(X,y, )], and we will

The short wavelength mechanism is based on the use of
Lagrangian stretching theory applied to rapidly varying.,
large wave numbgrcomponents of the passive scalar field.
As explained in Refs[2,16], if one considers the passive
scalar distribution to be broken up into a linear combination

*Present address: Courant Institute of Mathematical Sciencesif “wave packet” components such that each wave paicket
New York University, New York, New York 10012. is localized about a poin(t), has a dominant wave number
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ki(t), and has a total varianae(t) [integral of the square of ences an average exponential increase off(&xpt)h].

the scalar over the wave packethenx;(t), k;(t), and o;(t) Since the flow is incompressible, there is also an orientation

evolve according to the equations of &y along which displacements decrease exponentially as
exd —(t,—t;)h]. We now imagine that we choogerandomly

dki/dt=—k - [VVOX,) a0, (3 with uniform probability density per unit area in the spatial
domain of the flow. For such a random choibeyill have a
dx;/dt=v(x;,1), (4) probability distribution. Lettingt=t,—t;, and ignoring the
explicit dependence of the probability distribution gnwe
do/dt= - 2ka,;. (5)  denote this probability distribution functid®(h,t). For cha-

~ otic flows, large deviation theofyl 7—20Q implies thatP(h,t)
mension{,, and the largest dimensiofy characterizing the +0(t), which we represent as

wave packet satisfy

k€y>1, €, <Ly, (6) P(h,t) ~ exd - tG(h)]. (10

, G(h) is concave-upG”(h)=0, and its minimum value is
where L, denotes the scale length over which the SmOOﬂ‘Hefined to be zero. We denote the valuehdhat yields this

velocity field v(x,t) varies. The latter requirement is neces- . . h | h h h
sary for the validity of the local linear straining approxima- MnNMumM h. As t becomes large Ed10) shows that(h,t)

tion, Eq. (3). Note, also, that, due to the orthogonality of becomes more and more sharply peakel=t, approaching
sinusoids of different wave numbers, we can allow wavea delta function in the limit— +o. Thus, as discussed in
packets of different wave numbers to overlap spatially, an@yreater detail elsewhere.g.,[20]), for all initial conditions
this does not spoil the result that the total variadd® due Y in the flow domain, except for a set gf of Lebesgue
to many wave packets is simply the sum of their individualmeasure zero, the maximum Lyapunov exporteytt,,t;)
variances, approache ast=(t,—t;) approaches infinity.
Comparing Eq(8) and Eq.(3), Refs.[2,16] notes that, for
()= E ai(t). @) sufficiently large time, the evolution dk(t)| from an initial
' time t=0 will be approximately given by

Thus we can consider fields that are not locally sinusoidal
with a single well-defined wavenumber at each point in [k(®)] = [k(0)|cos¢ exp(ht). (11)
space. In particular to apply Eq&)—(7) to the short wave-  Here ¢ is the angle betweek(0) and the infinitesimal dis-
length components of an arbitrary initial conditiogg(x) placements, along which, over the time interval 0 tpthe
=2 A, explik -x), one can use linearity to break each initial chaotic flow is maximally contracting when following the
Fourier componentf, exp(ik -x), into wave packets, apply fluid trajectoryx(t) originating atx(0).
Egs. (3)~(5), and evoke Eq(7) (which comes from Fourier Based on Eqs3)—(11), Refs.[2,16] present a mechanism
orthogonality to superpose variances from different waveleading to an exponential damping of variance in the limit
packets including those derived from differéncomponents  [Eq. (2)] of zero diffusivity. Their result fory, is
of the initial Fourier series decomposition. Note that wave .
packets constructed from different initial wave number com- Yo= LTQ[G(h) +h]. (12
ponents overlap spatially. .
We will obtain this result by another method in Sec. Il. For
now, the important point is that, as required for the use of
Lagrangian stretching theory, Ed8)—(11), the damping rate

Attime t; we consider two points=y andx=y+é,, that  £q(12) is determined by processes taking place at short
are separated by an infinitesimal displacement ved§oAs  \yavelengthkL,> 1.

timet’ increases front, to t,, the evolution of the displace-
ment &(t’) obeys the equation,

2. Finite time Lyapunov exponents

C. Long wavelength mechanisms

daldt’ =[Vv(x,t")] - é, (8) It was pointed out in Refs6,7,19 that the decay rate
might also be determined by processes taking place at the
largest possible passive scalar scale size determined by the
extent of the fluid flow domaip. In these references it was
shown that, for the models they considered, an analysis could
be done that essentially showed that variance in the longest
1 wavelength Fourier component dynamically exchanges vari-
h(y,to,ty) = max{t > In[|5(t2)|/|50|]}, (9)  ance with shorter wavelength components, leading to a net
% (270 rate of transfer of variance out of the longest wavelength
where the maximum is taken over all orientations of theFourier component. That is, one can crudely view variance
infinitesimal displacement vectak,. Thus, foré, along the as “leaking out” of the longest wavelength Fourier compo-
direction of maximum stretching, the displacement experinent and then being transferred to successively shorter wave-

wherex is evaluated following the trajectory(t’) obtained
from the solution of Eq(4) with the initial conditionx(t;)
=y, and the initial condition for Eq(8) is &(t;)=a,. We
define the(maximunj finite time Lyapunov exponent as
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length components until diffusive damping sets in. In this ~ 7 =1/,
X T~ 7 =1/h, (16)

way thex— 0 decay ratey, is set by the net rate of transfer
out of the longest wavelength component of the stranget which time the region of influence is
eigenfunction. _

In addition, Ref[11] reports experimental results produc- Ix-y]= \/E (17)
ing a decay rate substantially smaller than that given by Eq.
(12). In this experiment the flow was produced by the Lor-For 7 larger thans’, the region of influence initially expands
entz force due to electrical current flowing through the fluide€xponentially along the backward-expanding directidne
in the presence of magnetic fields produced by manyo the chaotic advectionand maintains its width dt/h)/2
(~100 small magnets adjacent to the fluid container. Thugdue to a balance of diffusion and contracliohus the
the length scalé; of the flow velocity was determined by region of influence becomes a very long, thin filament with a
the distance between magnets dndwvas substantially less length
than the spatial exterity of the flow (Lp~10L¢). In this _ .
case the authors were able to explain their result on the basis (1) ~ \/%exp{rh], (18
of an effective chaotic diffusion. That is, since the flow ve- .
locity at points separated by more thiancan be assumed to Where we have neglected compared tor. As time pro-
become uncorrelated, the authors of Héfl] view the mo-  ce€ds{(7) becomes of ordei; and then begins to bend and
tion of a fluid element to be similar to a random walk. Trans-fold. Eventually, because of its nonzero width \%) the
port on the scalép> Ly is thus effectively diffusive. Denot-  filament “packs”[8] the flow domain. Assumingp=L;, this
@ng this_ effective diffusion c_oefficient by, the decay rate  ,..rs when the filament are(a;/ﬁ)l’%(r), is equal to the
|(s ﬁo;nlnated by the Fourier mode of longest Wavelengtfhrea of the flow domairsz, or [15],
~Lp),

Yo~ KerlL2. (13) 7~ h™t In[L2h/«]. (19)

At this time, different segments along the filament start
merging together, and the exponentially decaying strange
eigenfunction becomes established. Since the process of
folding and the resulting packing and filament merging is
D. Validity of Lagrangian stretching theory absent in the Lagrangian stretching theory, its validity may

Reference$8,15] present an argument showing that thebe expected to be restricted to time intervals that do not
Lagrangian stretching theory description of the evolution oféxceeds”. _ _
the distribution of a passive scalar eventually breaks down Since it may be expected that the regime of exponentially
if sufficiently long time intervals are considered. Based ondécaying variance is only established over a sufficiently long
this result, the validity of Eq(12) has been questioned. In time t>7", and since the exponential decay, in principal,
order to discuss this issue further, we now briefly review théasts forever, the validity of Eq12), which has been derived
argument. by use of Lagrangian stretching theory, valid only for time

Consider the passive scalar densiiy,t) at a fixed point  intervals less than”, has been questioned. Several papers
y and at a timd. We now ask, if we give the passive scalar have recently noted the uncertain state of affairs in this re-
field, #(x,t-), at a previous timé—r, >0, which region gard_[8313—15,21_ln contrast, in Sec. Il we show that Eq.
of x-space contributes to determining the passive scalar det}2) iS indeed valid under appropriate conditions. The basic
sity, ¢(y 1), at pointy and timet? This can be determined by €asoning is as follows. _Imaglne _that a sufficient time has
backward integration of Eq1) from timet to timet—r. For passed that a strange eigenfunction with exponentially de-

sufficiently small+ chaotic advective spreading is unimpor- caying variance has bee’? establlsh_ed. Nstarting at this
tant and diffusion dominates, giving a region of influence, UM& We can use Lagrangian stretching theory to advance the
short wavelength components of the spectrum forward in

x =y, > =< «r, (14)  time and obtain the short wavelength mechanism damping
rate [i.e., Eqg.(12)]. Note that to do this we only need to
wherey . denotes the location at time- 7 that is advected to evolve the passive scalar field for a relatively short time
y at timet. When|x-y,| becomes sufficiently large, the cha- (e.g., of the order ofy;*), and are not required to leave the
otic advective spreading becomes faster than the diffusiveange of validity of the Lagrangian theory set By

Note thaty, in Eqg. (13) can be made arbitrarily small if one
allows Ly to become large keeping; fixed.

spreading. This occurs when As we note later in the paper, even in the absence of a
_ prediction for the damping rate from E@L2), there is still a
Ix-y,]?*h =k, (15 clear distinction that could potentially be experimentally

_ drawn between the two mechanisms. Namely, for smrall
where h denotes the infinite time Lyapunov exponent herethe long wavelength mechanism produces a wave number
taken to represent a typical stretching rate. From @&d) power spectrum thatecreasesvith increasing wave number
and Eg. (15 the crossover between the spreading beingas a power law, while the short wavelength mechanism pro-
diffusion-dominated and the advection-dominated occursluces a wave number power spectrum that is essentially flat
when out to the diffusively-determined cutoff range.
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E. Outline k. Denote the spectrum ensemble averaged over random flow

In Sec. Il we(i) present a theoretical argument that, sub-ré@lizations at timety by Sy(k). Then, using Eq(11) and
ject to the satisfaction of a certain hypothesis, the zero dif2SSuming we are in the time asymptotic exponential decay
fusivity damping ratey, can never exceed the damping rate "€9ime, the spectrum at a later tirgg-t is
Eq. (12) determined by the short wavelength mechani6m; o 2m do
discuss the distinct wave number power spectrum signaturesSy(k)exp(— yot) = th(h,t)J o f dk' S(k')
of the two mechanisms we consider; afiid) introduce the 0 o 47
technique that we will subsequently apply in Sec. IV for X k- K (e?" co ¢ + e M sir? ¢) 117,
numerical evaluation of the theoretical predictions of the
short wavelength mechanism damping rdfg. (12)] and of (1)
the theoretical prediction of the long wavelength mechawhere, for simplicity, we have take®, to be isotropic(we
nism’s power-law wave number power spectrum decay eXreturn to this assumption shortlyin Eq. (21) the cos¢ term
ponent. In Sec. Il wei) introduce the flow that we will use and the sinp term are respectively due to the components of
for our numerical experimentsij) show that the flow satis- the initial wave vector along the contracting and expanding
fies the hypothesis used in Sec. Il in the derivation of thedirections. We want to show that the evolution E21) can
upper bound ony,; and (i) obtain another upper bound on pe satisfied fo1S,> 0 only if y,<min,-o{G(h)+h} applies.
Yo for this flow. In Sec. IV we present our numerical experi- |n order to match thé dependence on the two sides of Eq.
ments inClUding the fO||OWIng(I) Computations of the damp— (21), %(k) ~k™¥in the range ok considered. Thus we obtain
ing rate for system sizes up to610* by 6 10* grid points; . 27 4
(ii) computations of wave number power spectii) intro- _ _ 09 ont
duction of a spatial filtering technique designed to numeri- eXp= yol) = L th(h,t)fO Zw(ez cos ¢
cally distinguish the applicability of the long and short wave- ] L
length mechanisms; anflv) consideration of a range of +e M sin? ¢) 12, (22
values of(Lp/Ly) thereby obtaining situations at low values gq, large timeht>1, the integral over yields
(Lp/Ls) where the short wavelength mechanism apparently 5
applies, and others at higher values (bf,/L;) where the J dep(€M co ¢+ e M sir? )~ LWI2 ~ ~(1-]y)ht
long wavelength mechanism apparently applies. Section V 0 ’
concludes the paper. The main contributions of this paper are
(i) the provision of a justification for the applicability of two
mechanismgone of which, Eq.(12), has been previously for ¢+ 0. From Eq.(22) we then have
questionedlleading to a positive exponential damping rate of w0
scalar variance in the— 0" limit [i.e., Eq.(2)]; (ii) a dis- exp(— yot) NJ P(h,t)e" - ¥hhtgp, (24)
cussion of the respective regimes of applicability of and ob- 0
servable signatures of the two mechanisms; @ndsupport-
ing evidence of numerical experiments at much highe
numerical resolution than previously employed. Yo = min{G(h) + h— |¢{h}. (25)

h=0

(23

rUsing Eq.(10) for P(h,t) and lettingt be large, this gives

Thus,
Il. THE EXPONENTIAL DAMPING RATE AND THE

FORM OF THE STEADY STATE WAVE NUMBER Yo < EEQ{G(h) +h}, (26)
POWER SPECTRUM -
which is what we wanted to show.

Now we consider our assumption of isotrofgg In gen-

We begin by assuming a situation where a long waveeral, of course, the spectrum will depend on the orientation
length mechanism determines the time-asymptotic exponerf the wave vectok (i.e., it is nonisotropit To proceed we
tial decay rate of a strange eigenfunction. For wave numberadopt the hypothesis that, as a function of the orientation of
k< kdE(h/K)llz diffusion can be neg|ect362] [Compare k, we can boundy, above and below, as follows:

with Eq. (17)]. Since we are interested in the limit of diffu- AKY > (k) > BKY, (27)

sivity approaching zero, we can consider a range of wave o - - _
numbers, where A and B are finite and positive. The validity of this

- hypothesis is not to be taken for granted. For the case of the
ky= (W r)Y?> k> Kk = 27/L. (20)  flow treated in the next section, we will show that Ef7),
) o , in fact, is satisfied. For another case, treated in R&], it
In this range we can use diffusionless local stretching theor)éppears that Eq27) may be violated(this has been dis-

to evolve thek spectrum forward in time, provided that . sseq if12]). Assuming Eq(27) and proceeding as above,
does not become too smé&Kk~k;) or too large(k~ k) over Egs.(21)—(24), we obtain

the finite time interval that we consider for the evolution. For
any time interval, we can always find a rangekafihere this Al exp— ygl) > B, (28)
is satisfied, since we can consider arbitrarily small values of B 0 A’

A. Upper bound on the zero diffusivity damping rate
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wherel is the integral on the right hand side of E82). For  does this for the kinematic dynamo problém which case
larget, Eq. (28) again yields Eq(26). the relevant convected field is the magnetic fieldhile Ref.
According to Eq.(26), if a long wavelength mechanism [23] applies to the problem of the stability of a smooth La-
determines the damping and if hypothesis Ey) is satis- grangian chaotic fluid flowin which case the relevant con-
fied, then, by comparison of ER5) and Eq.(12), y, must  Vvected field is the fluid vorticityo(x,t)=V X v(x,1)].
be less than the damping rate determined by the short wave- Although Eq.(31) was derived under the assumption that
length mechanism, Eq12). Since these mechanisms are de-Ed. (26) holds(i.e., a long wavelength mechanism is opera-
termined in opposite ranges of thespectrum there is na  tive), we note that, when the short wavelength result(&g)
priori reason thaty, determined by long wavelength pro- IS Substituted in Eq(29), we obtainy=0, and, asy, in-
cesses should always be less thandetermined by short Créases from zero to the value given by Etp), the expo-
wavelength processéEq. (12)], or vice versa. We conclude nent ¢ decreases from one to zero. This suggests that long
on this basis that it is reasonable to suspect that eithef
mechanisms may apply, depending on the configuration O\é
the flow. That is, subject to the satisfaction of hypothesis Eq

nd short wavelength mechanisms should be distinguishable
ia examination of the wave number power spectrum of the
assive scalar in the time-asymptotic, strange eigenfunction
regime. In particular, log-log plots for spectra corresponding
to the short wavelength mechanism should be essentially flat
_ ‘ abut to k of orderky, while similar plots corresponding to a
exceeds Eq(12). In Sec. IV, we present numerical evidence |ong wavelength mechanism should decrease linearly with

that this is indeed the case. . the logarithm ofk. Numerical evidence supporting this will
To close this subsection we note the special role of theye provided in Sec. IV.

variance(2(t) = [ ¢?dx) as opposed to higher moments of the

scalar(Ep(t)=f¢29dx,p=2,3, ..). In particular, our deriva- C. Numerical technique for evaluating y, from Eq. (12) and i

tion above relies on Eq7) holding even when wave packets from Eg. (31)

with well-defined wave numberk; overlap spatially. The Equation(12) gives the short wavelength mechanisgm

validity of Eq. (7) in this case is a consequence of the or-as the minimum of G(h)+h] overh, and Eq.(31) gives the

thogonality of Fourier modes. A relation like E() does not  long wavelength mechanisg as one plus the minimum of

apply for higher moments, and thus predictions for the expofh™{G(h) = y,]} over h. One method of computing these

nential damping rate oE(t) as given in Refs[3,4] do not  quantities, employed in Reff2], is to first obtain a numerical

apply to the time asymptotic, strange eigenfunction regimeestimate ofG(h) and then to perform the minimization. The

(see discussion in Refg8,15]). computation of numerical approximations @&th) for flows

of the type we examine has been previously performed in

Refs.[2,19]. The technique employed was to first compute

histogram approximations t&(h,t) using a large number

~ We now invert Eq(29) to obtain the spectral expone#it  (N) of uniformly distributed initial conditionsy; (i

in terms of o andG(h). Rewriting the result for, we have =1 2 . N) to compute many values df(t) =h(y;,t,,ty),
min{G(h) + h=[lh = 5} = 0. (29) t=t,—-t; from Eq. (9). Approximations toG(h) were then
h=0 computed from plots of *In[P(h,t)]+C, whereC was ad-

justed so that the minimum of the numerical estimat&df)

was zero. By varyindN andt, the convergence and accuracy

of these estimates could be crudely judged.

In this paper we use an alternate numerical method for
evaluating the short wavelength mechaniggrand the long
min{h™[G(h) - yo] + 1 - |¢f} = 0. (300  wavelength mechanism. This alternate method has been
h=0 previously used to numerically calculate similar quantities in

This gives the spectral exponent for the power-law decay oRefs.[23,24. The alternate method, which circumvents the

B. Wave number power spectrum

Since the function in the curly bracket has a minimum of
zero, it is non-negative. Thus multiplying it by any positive
function of h again produces a positive function lofwhose
minimum is zero. Multiplying by 1l we obtain

S, with K, need for obtaining a numerical estimateGith), is simpler to
implement and is found to be more accurate and better con-
_ G -y vergent.
Y=z {1 * L‘;‘Q{ h (32) To illustrate the method we first consider the problem of

) finding the minimum of{G(h)+h] (i.e., of finding the pre-
Since the scalar spectrum propagates from low wavgjiciion of the value ofy, due to the short wavelength mecha-

number to high wave number and is dissipated at high WaVRisir). Noting from Eq.(10) that the average of expht)
number, it seems physically unreasonable t#at0 [i.e., over many initial conditions is

S(k) increases algebraically wit. Thus we reject the nega-
tive solution in Eq.(31). This is consistent with our numeri- _ _ht .

cal results as well as previous studies of the long wavelength {exp(=h0) _J P(h,Hedh ~ exp{- QQ[G(h) +hlth,
mechanisnm 6,7,11-13. Equation(31) (with the plus sigh (32)
also appears in Refl5] by Fereday and Haynes. Similar

results have previously been given for problems involvingwe employ the following procedure. As before, we first com-
the convection of vectofrather than scalafields: Ref.[22]  pute many values dfi(t). Then we estimatéexp(—ht)) as
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N and uncorrelated betweer, and3,,. Integrating the flow Eq.
(exp(= ht))y = N> expd - hi(t)t], (33 (36) over one time period, we obtain a map expressing the
i=1 position of a fluid elementx,,1,Yn+1) at timet=(n+1)T in

plot In(exp-ht))i* versus t, and finally estimate [€rms of its positior(x, y,) at imet=nT,

min,-o[ G(h)+h] as the slope of this curve. We note that it is Xoe1 = X, + (UT/2)cod (2my,/Ls) + ], (403
important to ensure thaf is large enough. In particular,
min[G(h) + h] < h. (34) Yne1 = Yo + (UT/2)cod (27Xn.1/Ls) + Bal. (40b)
h=0

The flow Eq.(36) is periodic in(x,y) space with a peri-
but ast—c, with N fixed, Eq.(33) will always approach odicity lengthL;. We take the passive scalar to be periodic
exp-ht), erroneously yielding the estimate This is be- Wit @ periodicity lengthLp=ML; where M is an integer.
cause, as mentioned in Sec. I B 2, in the o limit, hi(t) That is, the advecyon-dlffusmn equ_atlcEEq. (_1)] will be

— L . solved forv(x,y,t) given by Eq.(36) with periodic boundary
—h for almost every initial conditiory; (except for a set of conditions on the scalar fieldy(x+Lp,y+Lp)= d(X,y). We
%ligfirl;frzzssget(lje _Ir_r;]eeas;lir:t izse{gztuiv'\iltr:niﬁitrg\)sznade larger as. 1o that our choice of a random flow precludes the possibil-

; - hep ’ nthe average ity of Kolmogorov-Arnold-Moser surfaces and ensures that
Eqg. (33) is dominated by a smaller and smaller fraction of

I e X - . . fluid trajectories are chaotic and ergodic within the entire
!n|t|allcor}d|t|c;]n3| for whph_ex;ﬁf hi(ht)t].'s.r.mleh bégger than periodic cell, O=x<Lp, 0<y<Lp. Furthermore, the im-
Its value for the vast majority of other initial con itiof’.g., posed randomness of the flow simulates realistic typical situ-
see Ref[20]). This same problem is also present when ap

: L ) ‘ations where fluid instabilities lead to nonperiodic, tempo-
plying the method based on estimation®fh) from histo- rally chaotic time dependence of the velocity field.
grams, but we have found that the alternate method based on
Eq. (33) appears to converge significantly quickertjrand
so this problem is less severe. B. Is Eq. (27) satisfied?

Similar considerations can be applied to compgtEom
Eq. (29). As done for Eq(12), a result analogous to E(B2)

IS

We now discuss whether our specified flow configuration,
Egs.(36)—(39), will lead to a spectrum satisfying hypothesis
Eq.(27). If it does, then, as shown in Sec. Il, the short wave-

(exd~ (1 - )ht]) ~ exp{— min[G(h) + (1 — )h]t}. length mechanis_m result EQL2) supplies an upper bound on
h=0 the k— 0" damping ratey,. The key requirement in E427)
(35) is B>0. For the flow in Eq.36) we note that the random-
] ness ofa,, and B8, can be used to guarantee thgat0. If it
Thus, for fixedy (1>4>0), the larget slope of a plot of \vere zero, then the spectrusy(k) would be smaller than
In{(exd —(1-y)ht])}~* versus Int provides an estimate ofy  O(k™¥) for some particular orientation, or range of orienta-
for the long wavelength mechanism. Varyigigve construct  tions, ofk. Assume this is the case. For largéhis says that
a plot of yo versusy, from which, given the damping rat®, in the vicinity of every pointx in the domain the local high
the spectral power-law exponeittis obtained. k spectrum is smaller tha®(k™¥) in this direction. Now
apply the map Eqs40) to the assumed spectrum. Each of
these map applications rotates the angular range of the local
. THE MODEL FLOW high k spectrum by a random amount that is different at
different pointsx. After several map applications, Eq€.0)
} i ] ] have the property that the assumed angular range of smaller

Our numerical experiments in Sec. IV will be performed thanO(k-%) values of the local spectra can be rotated to any

using the following prescribed velocity fie[d,2], direction, and these directions are different at different
v(x,1) = Uixof(H)cod (2my/L;) + 6,(0)] Thus the assqmeq range whé&gk) is smaller tharO(k %)
cannot be maintained and we conclude tBat0. We have
+Yol1 - f(t)]cod (2mX/Le) + 62()]}.  (36)  tested this numerically using the simulations described in
Here the time dependent functiofié), 6,(t) and 6,(t) are ~ S€C- IV. Figure 1, corresponding 107/L5=1.09x 10°° (see
defined as follows: curve with this label in Flg. B shows polar plots oS(k,cp)_
(k=k|,tanp=k,/k,) obtained for a single random realiza-

A. Specification of the velocity field

(t) = 1 fornT=t<(n+1/2T, a7 tion of the flow[Egs.(36)—39)] at a representative instant of
()= 0 otherwise, (37) time. These plots are consistent with our supposition that a
range ofe in which Sk, ¢)=0 does not occur.
01(t) =a, fornT<st < (n+ 1/2)T, (39

C. Upper bound on ¥y, for the flow given in Eq. (36)

6at) = By for (n+ /AT <t < (n+ T, (39) In this section we find an upper bound to the decay rate of
wheren is an integer, andy, and 3,, are random numbers variance based on the rate at which variance is removed from
uniformly distributed in[0, 277], uncorrelated for differemi,  the longest wavelength mode present in the scalar. Let
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2x10* T T T T T conclude that given Ed42), Eq.(44) must provide an upper
bound on thex— 0" damping rate,

1
Yo=-=In[Jo(n)]?. (45)
4| T
1x10
Now, we consider the initial condition used in our numeri-
cal experiments, namely,

do(X,y) = Ag sin2m(x +y)/Lp]. (46)

Because of the form of our map E6), at timen=1 the
Fourier components excited from the initial condition Eq.
(46) arek=[+2mm,/L;+ 27/ (MLy), 27m,/ L+ 27/ (MLy)],
wherem, andm, are integers. Furthermore, subsequent ap-
plications of the map again return these same Fourier wave
number components. Thus at any timehe mode of longest
possible wavelength i&=[+2#7/(ML;), x27/(ML;)] if M
2x10* " " o ” ” 4 =2. Thus forM =2 we can proceed in a manner similar to
-3x10° -2x10° -1x10 X107 2x10°  3x10 what was done above. We evolvep,=A, sin2m(x

S cos ~
® +y)/(ML¢)] by the map Eq.{36) to obtain ¢,,; and then
FIG. 1. Polar plot oSk, ¢); k=|k|, tang=k,/k,. At eachp the ~ introduce a fictitious damping to dissipate all but the longest
discrete wave number spectrutii.=2mm/Lp,k,=2n7/Lp) is av-  wavelength Fourier mode ith,.;. The resulting scalar field

Ssing
o
T

Ax10* |

eraged over a range dfk=8 andA¢=18°. KT/L2D:l.09>< 107°. is given by
&n(X,y) denote the passive scalar field at tibvnT. Evolv- ne(6Y) =[3o(1) P bnlxy)- (47)
ing this field by the map Eq.36) we have Therefore, for the initial condition Eq46), we have the
~ following upper bound fory,,
bnea(XY) = (XY, (41) 1
where x’ and y’ are obtained from the inverse YST3 In[Jo(7)]*. (48)
mapping, y' =y—(UT/2)cod (2mx/L;) +B,], X' =x—(UT/2)
x cod (2my' IL¢) + a,]. The transformation Eq41) applies in I addition, for»<1 (M large, we obtain
the casex=0. Thus, it preserves the total scalar variance, 7 2. \2
redistributing variance in wave number space. We first con- VoS — = 2<—) Keffs (49
sider the effect of Eq(41) on a scalar which at time con- T MLy
sists of a single Fourier component at the lowest allowedyhere
wave number, L
b(x.y) = A, sin2mylLo), (42) et = GUT. (50)
whereLp=ML;. Equation(41) then yields, This is in agreement with the definitioncey=((Ax)?2
A { on [ uT 2mx +(Ay)?)/2T if (Ax?) and(Ay)? are computed from the map
Grir(X,y) =A,siny — |y - (—)co —+ ,Bn>] . Eq. (36) and the random angles, and 3, are averaged over.
ML 2 L Equations49) and(50) are also in agreement with EGL3).

(43 Thus while Eq(48) is an upper bound, it approaches the true
. . . value of yp asLp/Li=M — . If the upper bound E49) is
This function has Fourier wave number componentk at | yer than that provided by the short wavelength mechanism
=[2mm/L¢, £2a/(MLy)] wherem s an integer. Now assume  yamning rate Eq(26), then the short wavelength damping
that_a flctltlousk-depend_ent damping is applied that strongly jechanism does not apply. We conclude that, for the flow
dissipates all the Fourier componenks > 2/ (MLy), but given by Eqgs(36)—(39) and the initial condition Eq(46), a

does not damp the Fourier compongkt= 2m/(MLy). This  gyfficient condition for the applicability of a long wavelength
results in a passive scalar field, ¢n:1(X,¥Y)  mechanism is

=[5 hnea(X',y)dX /Ly, OF 1

. min[G(h) + h] > = = In[J(7)]*. 51
Grea(X,Y) = Ado( m)sin(2myiLp) (44) MIRLG(h)+ ] > = 3 InlJo(7n)] &Y

where »=7UT/(ML;) and Jy(#) is the zeroth order Bessel

function. Thus, the variance has decreased by the factor IV. NUMERICAL EXPERIMENTS

[Jo(7)]% Since this fictitious damping is much larger than the  We numerically solve the advection diffusion problem for

molecular diffusive damping used in E@) with k— 0%, we  the flow Eqgs.(36)<(39) using a modification in which the
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FIG. 2. Log-linear plot ofexp(—ht));! versust. The dashed line FIG. 3. Exponential decay of scalar variance with time at dif-

is a linear fit whose slope gives prediction fogg by the short ~ ferent diffusivity «.

wavelength mechanism. o ) ) )
fitting function y(k)=y,+Ax®, we obtainy,~0.16, if we

. . . e . determiney(x) by fits to data in Fig. 3 restricted to the range
flow is applied without diffusion for each time stepJ<t —20=In C=-10, but we obtain a much lower extrapolated

<(n+1)T, followed by a diffusive step in which the passive ) )
scalar field is diffusively smoothed. In addition, we use thevalug using data from the rapgei_S/TleE?. This extreme
sensitivity to the resulting tiny difference im(«) by these

“lattice method” of Ref.[5] which employs a square grid o S
representation of the scalar field. There are various ways 0 dgtermlnatlons is indicated b_y the s_mall values of the
est fitted exponenB (e.g., 0.13 in the first cagecorre-

doing this. The particular implementation we use is outline ding t ¢ d f( 0. Th
in the Appendix. The main point is that, because of the sim>P°oNdINg to very steep ecreaseybk) as«—0. Thus, we

plicity and parallelizability of this method, computations can VIEW our computational results fox(«) as not being defini-
be very fast, and the use of very high resolutions becomelve, and we seek other means of testing for whether the short
wavelength mechanism is operative.

feasible. For results reported in this section, the initial con- o i
dition for the passive scalar is taken to hg(x,t=0) More definite evidence for the short wavelength mecha-

=2 sif2m(x+y)/Lp] and we usdJT= in Eq. (40). nism is provided by examining the wavenumber power spec-
Following the procedures described in Sec. Il C, we caI-trurn Sk.t) in the strange eigenfunction regiméik,t) is

culate the theoretical valug, for our flow from Eq.(12) by ~ defined as
plotting —-In{exp(—ht))y versust in Fig. 2, where we have 0.20

consideredN=8192 initial conditions. By measuring the L . o
slope of the curve, the prediction fag by the short wave- 0.18. = —© 4
length mechanism is estimated to be 0.16. 0.1 0.185 4
. . . 0.14F .
A. Numerical experiments with Lp=L¢ 0.180
In this case, we will find results consistent with the hy- e ]
pothesis that the short wavelength mechanism appliesygnd g 0.10F -
is given by Eq(12). Figure 3 shows the exponential decay of 0.170
the scalar varianc€(t)=1/L2f ¢2dx for different diffusivity a08 - 7
« (refer to the Appendix for the definition af in our lattice 0.06 o165 _
mode). The decay rateg(x) are measured and plotted in
Fig. 4. As expectedy(x) decreases witlk. At the smallest QORI 0.160T T
we achieve, which corresponds to a grid ok #0* by 6 0.02} 0 0% 210® a0® o o]
X 10%, ¥(x) is estimated to be 0.17, which is within 6% of T T T
the theoretical valu€0.16 predicted by the short wavelength 000 1510°%  2x10®  3x10%  4x10®  5x10°
mechanism. KTIL,

We have tried extrapolating our smadlresults tox=0,
but we find that the extrapolated value depends sensitively FiG, 4. Exponential decay rate of the scalar variance at different
on small changes in our nymerlcally 'determlnﬁfd) and on ~ diffusivity (circle). The theoretical prediction by the short wave-
the assumed form of the fitting function. For example, usingength mechanism Eq12) is also plotted(cros3. The inset plots
a three parametdry,,A,B) fit of our numerical data to the the same data on a different scale.
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|¢( k’ )|2 0
Sik,t) = f(z e Gl (52)

where Zb(k,t) is the Fourier transform of the scalar field
d(x,1). In- the strange eigenfunction regime§(k,t)~

exp(—yot)M(K) [1,2]. Hence, we consider the time-averaged

spectrumS,, (k) defined as S o
=]
SavdK) = (Sk,/C(1))y. (53 B KLy

0278 x10" (a=1)
Figure 5 shows a log-log plot &,,(k) versusk for different 24505 x10° (a=2)
x. These curves are obtained by time-averaging in the inter- 51 eaq74x10% (4=
val 90=<t/T=100. For allx, S,,¢K) is essentially flat out to vv4.35 x 10° (a=8) 4
the diffusive cutoff scaldy (note in particular the curve for +—1.00 x 10° (a=16) b
KT/L2D=1.09>< 10°°). As explained in Sec. Il, this indicates 20 I L 1
that v, is determined by the short wavelength mechanism. 0 25 50 S 100

To obtain our strongest evidence for the applicability of o

the short wavelength mechanism for the casg=L, we FIG. 6. Decay of scalar variance under large long wavelength

introduce the following spatial filtering technique. Prior to damping with the ratiaky/ky kept fixed.
performing the advection step and the diffusive smoothing

step on every period, we remove all Fourier components;, 4 aky/ky and provides very strong evidence thgitx)

Bk, 1) with [k]|=ak, and |k|=ak, wherek,=2m/Lp and  is determined by the short wavelength mechanism when
a>0. This essentially introduces a very strong long waveq =| .

length damping. Keepingky/ky fixed (ky~ 1/\x), insensi-
tivity of the damping ratey(x) to a shows that mechanisms

at long wavelengths do not determine the damping, and thus
indicates that the short wavelength mechanism applies. We As described in Sec. | C, the behavior of the system for
employed such long wavelength damping in our numericathe casd_p>L; can be quite different from that fdry=L;.
experiments after the initial transief®0 period$ of the vari-  In particular, if Lp>L;, the velocity field varies on scales
ance decay. Figure 6 shows the scalar variance as a functigmaller than the longest length scale of the scalar field. When
of time for five different pairs ok anda, each with the same Eq. (51) is satisfied, the long wavelength mechanism must
ako/ky ratio. It shows clearly that at large all curves are  determine the variance damping rate.

more or less parallel to each other, and thus the decay rate Letting Lp=ML;, we study the variance decay for differ-
¥(x) is approximately the same in all cases. Figure 7 plotent values oM. Figure 8 plots the damping ratgx) as a
¥(k) versus log \KT/L2 for different values ofa. The dot-  function of M for simulations with«T/L3=6.95x 10°8/M?2.

ted lines connect data points with the saakg/k, ratio. This ~ The prediction fory, by the short wavelength mechanism
result is consistent with(x) being independent af given a

B. Numerical experiments with Lp>L;

0.25
-3 T T T T T T

KT/, =1.09 x 10° 0.24

] 0.23

KT/L5=4.35 x 10° 0.22

0.21
2 -8 /Q

KT/LE=1.74 x 10 ¥ 0.20

0.19

In [S,. (k)]

-7
2 _ -8 | ® =0
KT/L,=6.95x 10 0.18 B g=/
8k 017} PP
+ a=8
0.16 X a=16
ok * a=32
0.15 1 | 1 1 1 |
A5 14 13 42 41 -10
) ! 1 I L log,(xT/LL)"”
100 1 5 7 oz,( D)

3 4
Ink
FIG. 7. Decay rate of scalar variance at different diffusivity
FIG. 5. Averaged wave number power spe@ga(k) at differ- and different amoun(icontrolled bya) of long wavelength damping.

ent diffusivity «. The dotted lines connect data points with the sakgky ratio.
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In |8, (k)]
(4]
I
72
I4

0.05

0.00

4M5 6 0 1 2 3 4 5 6 7
Ink

FIG. 8. Decay rate of scalar variance as a functioMoivhere
M=Lp/Ls (circle). The dotted line is the prediction foy, by the
short wavelength mechanism and the dashed line is the long wav
length mechanism upper bound E48).

FIG. 9. Averaged wave number power spe@g(k) for differ-
gnt values oM (Fourier modes with zero amplitude are omijted
The dashed lines are the linear fits used to estimate the scaling
exponentsy.
(dotted ling and the long wavelength mechanism upper

bound Eq.(48) (dashed lingare also showny(x) remains  \yith the theory. The discrepancy is probably due to the small

roughly constant for smalM, and then decreases Bsin- byt nonzero value ok used in the numerical experiments.
creases foM > 3. This result is in agreement with E(1).

We interpret the fact thaj(x) at M=1,2,3 exceeds the
=0 .short yvav_elength mech.anism upper bound as being due V. CONCLUSION
to finite diffusion(e.g., see inset to Fig.)4

The upper bound Ed48) is obtained by removing all the We consider the advection of passive scalars in chaotic
variance “leaking out” from the longest wavelength Fourierfluid flows. Two mechanisms that lead to a positive exponen-
mode. As can be seen in Fig. 8, fst> 3, the upper bound tial damping ratey, of scalar variance in the zero diffusivity
Eq. (48) is smaller than the short wavelength mechanismimit are studied<(i) the short wavelength mechanism which
prediction Eq.(12). Thus, the excellent agreement betweenis based on Lagrangian stretching theory dig the long
the numerical results and the dashed line in Fig. 8 shows thayavelength mechanism which involves processes taking
the variance decay rate is indeed determined by the processeléice at the longest length scale of the system.
at the longest wavelength for larg#. Our numerical results
also support the statement made in Sec. Il C thatVas 1.0
— oo, Eq.(48) approaches the true value gf. On the other
hand, forM <3, Fig. 8 shows that the decay rates obtained
from our numerical experiments remain close to the value 0.8
predicted by Eq(12).

As discussed in Sec. Il, the long wavelength mechanism
is associated with a power-law wave number power spec- 0.6
trum. Figure 9 shows the time-averaged power spectrum
S.dK), defined in Eq.(53), for different values ofM. As
expected, for largéM, the spectrum decreases with increas- 0.4
ing k as a power lav, (k) ~ k™, while for smallM, S, (k)
has similar shape as the spectrum shown in Fig. 5 for the
caselp=L;. For >0, the Lagrangian stretching theory 0.2
gives the relation Eq(31) betweeny and y,. Using the
technique described in Sec. Il C, in particular E85), we

can evaluate) theoretically as a function of,. The result is 0.0 L L 13 S

shown as dashed line in Fig. 10. The valuejofirops from 0.00 0.05 010 0.15 020

1 to 0 asy, increases from 0O to the value given by Efj2). 0

We also measure the exponehof our numerically obtained FIG. 10. Wave number power spectrum scaling expogevir-

power SpeCtrunﬁ_avg(k) for different Va|l.195 oM. The results  sus scalar decay ratg, The dashed line is the theoretical result
are plotted against the corresponding measuyéd) as  obtained by Eq(31). Circles are results from numerical experi-
circles in Fig. 10. The numerical results agree fairly well ments using small but finite.
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Subject to the satisfaction of hypothesis Eg7), the (P, d+1) A (@+1,4+1)
damping rate predicted by the short wavelength mechanism
Eq. (12) gives an upper bound foy,. For the particular flow

[Egs.(36)—(39)] that we study, we find that, when the system («', 1)
length scald_p is comparable to the length scale of the flow - A
L, our numerical experimentsvhich employ gird size up to |
6x 10" by 6x10% provide strong evidence that the short bA |

|

wavelength mechanism applies awglis given by Eq.(12).

On the other hand, whehp>L¢, the long wavelength
mechanism applies. For the flow we study, we obtain a suf-
ficient condition Eq.(51) for the applicability of the long

', q) aA (@ +1,49)

FIG. 11. lllustration of interpolation in the advection stegmnd

wavelength mechanism. b are in(0,1).
The two mechanisms can be distinguished, possibly ex-
perimentally, by measuring the wave number power spec- d)(p,q) :(1_a)(1_b)¢(p’,q’)
trum. For small diffusivity, the long wavelength mechanism 2 "
produces a spectrum that decreases as a power law, while the +a(l-b) ¢$1p'+1'q') +(1 —a)bqbﬁ]p"q'*l)

short wavelength mechanism produces a spectrum that is flat (p'+1q'+1)
out to the diffusive cutoff scale. +abgy TN (AL)

Finally we note that we have very recently received a Thjs interpolation contributes an amount of large scale
preprint of a paper by P. H. Haynes and J. Vann¢g8® diffusion equal tox;=A2/(6T). (Here by “large scale” diffu-
which also treats the regimes of applicability of the short andsion we mean that for variation @f over a scale much larger
long wavelength mechanisms of passive scalar decay.  than A, the interpolation acts approximately the same as

would di(ffusion of sizex;.) We next do an additional smooth-
ing of ¢n”+'f1)/2) to obtain ¢>
o= > CuCyaiis™, (A2)

Irl|ls=<2
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the total diffusion isk=«;+«x.=(7/6)A%/T. The particular
APPENDIX: NUMERICAL TECHNIQUE choice we use for the cpnstan'@o, C,, and C,, has thg
property that the smoothing step E@2) takes the coeffi-
The version of the lattice techniqui#,5] used in Sec. IV cient of the highest allowed Fourier components on the grid
is as follows. Letqsf]p'@ denote the scalar field value at the (i.e., expimx/A] and expimy/A]) exactly to zero.
grid point (x,y)=(pA,gA), wherep andq are integersA is Note that for the advection step E@Al) [and the
the grid spacing, and the scalar field is evaluated just aftesmoothing step Eq(A2)] the computation of the values of

the nT smoothing stefiSec. IV). Now we perform the ad-  ¢*9 (4P%) at grid point (p,q) depends only on values

vection step to obtaieby:.{,, by (i) using the map Eq(40) to #P 9 (pP D)) at the previous half step, and is therefore
take the grid poink=pA, y=gA backward in time to a point independent of current values on other grid points. Thus
(x',y’) and (i) linearly interpolating thes, from the four these computations can be done in parallel, and can be very

grid points nearedix’,y’) onto(x’,y’). Referring to Fig. 11, fast.
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