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The time asymptotic decay of the variance of a passive scalar in a chaotic flow is studied. Two mechanisms
for this decay, which involve processes at short and long length scales, respectively, are considered. The
validity of the short length scale mechanism, which is based on Lagrangian stretching theory, is discussed. We
also investigate the regimes of applicability and observable signatures of the two mechanisms. Supporting
evidence is provided by high resolution numerical experiments.
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I. INTRODUCTION AND BACKGROUND

There has been much recent interest in the problem of
passive scalar advection in chaotic fluid flows. In particular,
much interest has focused on the time asymptotic decay of
the variance of a passive scalarf1–15g. Different mecha-
nisms for this decay have been proposed and discussed
f2,6–12,15g. It is the purpose of the present paper to inves-
tigate the validity and regimes of applicability of two of
these mechanisms, one in which the damping is determined
by processes occurring at short length scalesf2g, and one in
which the damping is determined by processes taking place
at the longest possible scalef6,7,11,12g si.e., that determined
by the spatial extent of the fluid itselfd. We note that the
validity of the short length scale mechanism has been ques-
tionedf8,12,15g. In the rest of this section we provide further
introductory background and discussion, and then summarize
the organization of the paper.

A. The damping rate of passive scalar variance in the strange
eigenfunction regime

We consider a passive scalar field subjected simulta-
neously to diffusion and to advection by a spatially smooth,
mono-scale, fully chaotic flow in the absence of both sources
and sinks of the scalar. Denoting the scalar field byfsx ,td,
the fluid velocity field byvsx ,td sassumed incompressibled,
and the molecular diffusion coefficient byk, we have that
fsx ,td obeys the advection-diffusion equation,

]f/]t + v · ¹ f = k¹2f, s1d

and the initial fieldfsx ,0d is specified. In what follows we
shall be interested in the case of smallk. For simplicity, we
will henceforth restrict attention to the case of two-
dimensional flowsvsx ,td=fvxsx,y,td ,vysx,y,tdg, and we will

take the spatial average off to be zero,efsx ,tddx=0.
As shown in the paper by Pierrehumbertf1g and other

subsequent studiesf2,5–7,11–15g, for sufficiently long time
this situation results in a “strange eigenfunction” in which
the scalar variance decays exponentially in timefvariance
,exps−gskdtdg. Furthermore,the rate of this exponential de-
cay gskd becomes independent of the diffusion coefficientk
as the diffusion becomes small,

lim
k→0+

gskd ; g0 . 0, s2d

and depends only on properties of the flow.
The quantityg0 is the focus of the present paper. Two

very different types of physical mechanisms have been ad-
vanced as possible candidates determiningg0. We refer to
these mechanisms as being either a “short wavelength
mechanism” or a “long wavelength mechanism.” Our main
point in this paper is that both types of mechanisms are valid
in the sense that there are regimes where one applies, and
there are other regimes where the other applies.sThese two
mechanisms are not the only possible cases, as variance
damping whose rate is determined by the presence of
Kolmogorov–Arnold–Moser surfacesf9g, or by the presence
of impenetrable boundariesf10g has also been studied. These
are fundamentally different from the two types of mechanism
we consider here in that they do not satisfy Eq.s2d, i.e., at
small k the damping due to these mechanisms approaches
zero withk.d

B. The short wavelength mechanism

1. Lagrangian stretching theory

The short wavelength mechanism is based on the use of
Lagrangian stretching theory applied to rapidly varyingsi.e.,
large wave numberd components of the passive scalar field.
As explained in Refs.f2,16g, if one considers the passive
scalar distribution to be broken up into a linear combination
of “wave packet” components such that each wave packeti
is localized about a pointxistd, has a dominant wave number
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k istd, and has a total variancesistd fintegral of the square of
the scalar over the wave packetg, thenxistd, k istd, andsistd
evolve according to the equations

dk i/dt = − k · f¹vsx,tdgx=xistd
, s3d

dxi/dt = vsxi,td, s4d

dsi/dt = − 2ki
2ksi . s5d

We note that Eqs.s3d–s5d presuppose that the smallest di-
mension,w and the largest dimension,, characterizing the
wave packet satisfy

k,w @ 1, ,, ! Lf , s6d

where Lf denotes the scale length over which the smooth
velocity field vsx ,td varies. The latter requirement is neces-
sary for the validity of the local linear straining approxima-
tion, Eq. s3d. Note, also, that, due to the orthogonality of
sinusoids of different wave numbers, we can allow wave
packets of different wave numbers to overlap spatially, and
this does not spoil the result that the total varianceSstd due
to many wave packets is simply the sum of their individual
variances,

Sstd = o
i

sistd. s7d

Thus we can consider fields that are not locally sinusoidal
with a single well-defined wavenumber at each point in
space. In particular to apply Eqs.s3d–s7d to the short wave-
length components of an arbitrary initial condition,f0sxd
=okAk expsik ·xd, one can use linearity to break each initial
Fourier component,Ak expsik ·xd, into wave packets, apply
Eqs. s3d–s5d, and evoke Eq.s7d swhich comes from Fourier
orthogonalityd to superpose variances from different wave
packets including those derived from differentk components
of the initial Fourier series decomposition. Note that wave
packets constructed from different initial wave number com-
ponents overlap spatially.

2. Finite time Lyapunov exponents

At time t1 we consider two pointsx=y andx=y+d0, that
are separated by an infinitesimal displacement vectord0. As
time t8 increases fromt1 to t2, the evolution of the displace-
mentdst8d obeys the equation,

dd/dt8 = f¹vsx,t8dg · d, s8d

wherex is evaluated following the trajectoryxst8d obtained
from the solution of Eq.s4d with the initial conditionxst1d
=y, and the initial condition for Eq.s8d is dst1d=d0. We
define thesmaximumd finite time Lyapunov exponent as

hsy,t2,t1d = max
d0

H 1

t2 − t1
lnfudst2du/ud0ugJ , s9d

where the maximum is taken over all orientations of the
infinitesimal displacement vectord0. Thus, ford0 along the
direction of maximum stretching, the displacement experi-

ences an average exponential increase of expfst2− t1dhg.
Since the flow is incompressible, there is also an orientation
of d0 along which displacements decrease exponentially as
expf−st2− t1dhg. We now imagine that we choosey randomly
with uniform probability density per unit area in the spatial
domain of the flow. For such a random choice,h will have a
probability distribution. Lettingt= t2− t1, and ignoring the
explicit dependence of the probability distribution ont1, we
denote this probability distribution functionPsh,td. For cha-
otic flows, large deviation theoryf17–20g implies thatPsh,td
obeys the larget asymptotic relation, lnPsh,td=−tGshd
+ostd, which we represent as

Psh,td , expf− tGshdg. s10d

Gshd is concave-up,G9shdù0, and its minimum value is
defined to be zero. We denote the value ofh that yields this

minimum h̄. As t becomes large Eq.s10d shows thatPsh,td
becomes more and more sharply peaked ath= h̄, approaching
a delta function in the limitt→ +`. Thus, as discussed in
greater detail elsewherese.g.,f20gd, for all initial conditions
y in the flow domain, except for a set ofy of Lebesgue
measure zero, the maximum Lyapunov exponenthsy ,t2,t1d
approachesh̄ as t=st2− t1d approaches infinity.

Comparing Eq.s8d and Eq.s3d, Refs.f2,16g notes that, for
sufficiently large time, the evolution ofukstdu from an initial
time t=0 will be approximately given by

ukstdu > uks0ducosf expshtd. s11d

Here f is the angle betweenks0d and the infinitesimal dis-
placementd0 along which, over the time interval 0 tot, the
chaotic flow is maximally contracting when following the
fluid trajectoryxstd originating atxs0d.

Based on Eqs.s3d–s11d, Refs.f2,16g present a mechanism
leading to an exponential damping of variance in the limit
fEq. s2dg of zero diffusivity. Their result forg0 is

g0 = min
hù0

fGshd + hg. s12d

We will obtain this result by another method in Sec. II. For
now, the important point is that, as required for the use of
Lagrangian stretching theory, Eqs.s3d–s11d, the damping rate
Eq. s12d is determined by processes taking place at short
wavelength,kLf @1.

C. Long wavelength mechanisms

It was pointed out in Refs.f6,7,12g that the decay rate
might also be determined by processes taking place at the
largest possible passive scalar scale size determined by the
extent of the fluid flow domainLD. In these references it was
shown that, for the models they considered, an analysis could
be done that essentially showed that variance in the longest
wavelength Fourier component dynamically exchanges vari-
ance with shorter wavelength components, leading to a net
rate of transfer of variance out of the longest wavelength
Fourier component. That is, one can crudely view variance
as “leaking out” of the longest wavelength Fourier compo-
nent and then being transferred to successively shorter wave-
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length components until diffusive damping sets in. In this
way thek→0 decay rateg0 is set by the net rate of transfer
out of the longest wavelength component of the strange
eigenfunction.

In addition, Ref.f11g reports experimental results produc-
ing a decay rate substantially smaller than that given by Eq.
s12d. In this experiment the flow was produced by the Lor-
entz force due to electrical current flowing through the fluid
in the presence of magnetic fields produced by many
s,100d small magnets adjacent to the fluid container. Thus
the length scaleLf of the flow velocity was determined by
the distance between magnets andLf was substantially less
than the spatial extentLD of the flow sLD,10Lfd. In this
case the authors were able to explain their result on the basis
of an effective chaotic diffusion. That is, since the flow ve-
locity at points separated by more thanLf can be assumed to
become uncorrelated, the authors of Ref.f11g view the mo-
tion of a fluid element to be similar to a random walk. Trans-
port on the scaleLD@Lf is thus effectively diffusive. Denot-
ing this effective diffusion coefficient bykeff, the decay rate
is dominated by the Fourier mode of longest wavelength
s,LDd,

g0 , keff/LD
2 . s13d

Note thatg0 in Eq. s13d can be made arbitrarily small if one
allows LD to become large keepingLf fixed.

D. Validity of Lagrangian stretching theory

Referencesf8,15g present an argument showing that the
Lagrangian stretching theory description of the evolution of
the distribution of a passive scalar eventually breaks down
if sufficiently long time intervals are considered. Based on
this result, the validity of Eq.s12d has been questioned. In
order to discuss this issue further, we now briefly review the
argument.

Consider the passive scalar densityfsy ,td at a fixed point
y and at a timet. We now ask, if we give the passive scalar
field, fsx ,t−td, at a previous timet−t, t.0, which region
of x-space contributes to determining the passive scalar den-
sity, fsy ,td, at pointy and timet? This can be determined by
backward integration of Eq.s1d from time t to time t−t. For
sufficiently smallt chaotic advective spreading is unimpor-
tant and diffusion dominates, giving a region of influence,

ux − ytu2 & kt, s14d

whereyt denotes the location at timet−t that is advected to
y at timet. Whenux−ytu becomes sufficiently large, the cha-
otic advective spreading becomes faster than the diffusive
spreading. This occurs when

ux − ytu2h̄ * k, s15d

where h̄ denotes the infinite time Lyapunov exponent here
taken to represent a typical stretching rate. From Eq.s14d
and Eq. s15d the crossover between the spreading being
diffusion-dominated and the advection-dominated occurs
when

t , t8 ; 1/h̄, s16d

at which time the region of influence is

ux − ytu & Îk/h̄. s17d

For t larger thant8, the region of influence initially expands
exponentially along the backward-expanding directionsdue

to the chaotic advectiond, and maintains its width atsk / h̄d1/2

sdue to a balance of diffusion and contractiond. Thus the
region of influence becomes a very long, thin filament with a
length

,std , Îk/h̄ expfth̄g, s18d

where we have neglectedt8 compared tot. As time pro-
ceeds,,std becomes of orderLf and then begins to bend and

fold. Eventually, because of its nonzero widths,Îk / h̄d the
filament “packs”f8g the flow domain. AssumingLD=Lf, this

occurs when the filament area,sk / h̄d1/2,std, is equal to the
area of the flow domain,Lf

2, or f15g,

t9 , h̄−1 lnfLf
2h̄/kg. s19d

At this time, different segments along the filament start
merging together, and the exponentially decaying strange
eigenfunction becomes established. Since the process of
folding and the resulting packing and filament merging is
absent in the Lagrangian stretching theory, its validity may
be expected to be restricted to time intervals that do not
exceedt9.

Since it may be expected that the regime of exponentially
decaying variance is only established over a sufficiently long
time t@t9, and since the exponential decay, in principal,
lasts forever, the validity of Eq.s12d, which has been derived
by use of Lagrangian stretching theory, valid only for time
intervals less thant9, has been questioned. Several papers
have recently noted the uncertain state of affairs in this re-
gard f8,13–15,21g. In contrast, in Sec. II we show that Eq.
s12d is indeed valid under appropriate conditions. The basic
reasoning is as follows. Imagine that a sufficient time has
passed that a strange eigenfunction with exponentially de-
caying variance has been established. Now,starting at this
time, we can use Lagrangian stretching theory to advance the
short wavelength components of the spectrum forward in
time and obtain the short wavelength mechanism damping
rate fi.e., Eq. s12dg. Note that to do this we only need to
evolve the passive scalar field for a relatively short time
se.g., of the order ofg0

−1d, and are not required to leave the
range of validity of the Lagrangian theory set byt9.

As we note later in the paper, even in the absence of a
prediction for the damping rate from Eq.s12d, there is still a
clear distinction that could potentially be experimentally
drawn between the two mechanisms. Namely, for smallk,
the long wavelength mechanism produces a wave number
power spectrum thatdecreaseswith increasing wave number
as a power law, while the short wavelength mechanism pro-
duces a wave number power spectrum that is essentially flat
out to the diffusively-determined cutoff range.
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E. Outline

In Sec. II wesid present a theoretical argument that, sub-
ject to the satisfaction of a certain hypothesis, the zero dif-
fusivity damping rateg0 can never exceed the damping rate
Eq. s12d determined by the short wavelength mechanism;sii d
discuss the distinct wave number power spectrum signatures
of the two mechanisms we consider; andsiii d introduce the
technique that we will subsequently apply in Sec. IV for
numerical evaluation of the theoretical predictions of the
short wavelength mechanism damping ratefEq. s12dg and of
the theoretical prediction of the long wavelength mecha-
nism’s power-law wave number power spectrum decay ex-
ponent. In Sec. III wesid introduce the flow that we will use
for our numerical experiments;sii d show that the flow satis-
fies the hypothesis used in Sec. II in the derivation of the
upper bound ong0; and siii d obtain another upper bound on
g0 for this flow. In Sec. IV we present our numerical experi-
ments including the following:sid computations of the damp-
ing rate for system sizes up to 63104 by 63104 grid points;
sii d computations of wave number power spectra;siii d intro-
duction of a spatial filtering technique designed to numeri-
cally distinguish the applicability of the long and short wave-
length mechanisms; andsivd consideration of a range of
values ofsLD /Lfd thereby obtaining situations at low values
sLD /Lfd where the short wavelength mechanism apparently
applies, and others at higher values ofsLD /Lfd where the
long wavelength mechanism apparently applies. Section V
concludes the paper. The main contributions of this paper are
sid the provision of a justification for the applicability of two
mechanismsfone of which, Eq.s12d, has been previously
questionedg leading to a positive exponential damping rate of
scalar variance in thek→0+ limit fi.e., Eq. s2dg; sii d a dis-
cussion of the respective regimes of applicability of and ob-
servable signatures of the two mechanisms; andsiii d support-
ing evidence of numerical experiments at much higher
numerical resolution than previously employed.

II. THE EXPONENTIAL DAMPING RATE AND THE
FORM OF THE STEADY STATE WAVE NUMBER

POWER SPECTRUM

A. Upper bound on the zero diffusivity damping rate

We begin by assuming a situation where a long wave-
length mechanism determines the time-asymptotic exponen-
tial decay rate of a strange eigenfunction. For wave numbers

k!kd;sh̄/kd1/2 diffusion can be neglectedf2g fcompare
with Eq. s17dg. Since we are interested in the limit of diffu-
sivity approaching zero, we can consider a range of wave
numbers,

kd = sh̄/kd1/2 @ k @ kf = 2p/Lf . s20d

In this range we can use diffusionless local stretching theory
to evolve thek spectrum forward in time, provided thatk
does not become too smallsk,kfd or too largesk,kdd over
the finite time interval that we consider for the evolution. For
any time interval, we can always find a range ofk where this
is satisfied, since we can consider arbitrarily small values of

k. Denote the spectrum ensemble averaged over random flow
realizations at timet0 by S0skd. Then, using Eq.s11d and
assuming we are in the time asymptotic exponential decay
regime, the spectrum at a later timet0+ t is

S0skdexps− g0td =E
0

`

dhPsh,tdE
0

2p df

2p
E dk8S0sk8d

3dfk − k8se2ht cos2 f + e−2ht sin2 fd1/2g,

s21d

where, for simplicity, we have takenS0 to be isotropicswe
return to this assumption shortlyd. In Eq. s21d the cosf term
and the sinf term are respectively due to the components of
the initial wave vector along the contracting and expanding
directions. We want to show that the evolution Eq.s21d can
be satisfied forS0.0 only if g0,minhù0hGshd+hj applies.
In order to match thek dependence on the two sides of Eq.
s21d, S0skd,k−c in the range ofk considered. Thus we obtain

exps− g0td =E
0

`

dhPsh,tdE
0

2p df

2p
se2ht cos2 f

+ e−2ht sin2 fd−s1−cd/2. s22d

For large time,ht@1, the integral overf yields

E
0

2p

dfse2ht cos2 f + e−2ht sin2 fd−s1−cd/2 , e−s1−ucudht,

s23d

for cÞ0. From Eq.s22d we then have

exps− g0td , E
0

`

Psh,tde−s1−ucudhtdh. s24d

Using Eq.s10d for Psh,td and lettingt be large, this gives

g0 = min
hù0

hGshd + h − ucuhj. s25d

Thus,

g0 , min
hù0

hGshd + hj, s26d

which is what we wanted to show.
Now we consider our assumption of isotropicS0. In gen-

eral, of course, the spectrum will depend on the orientation
of the wave vectork si.e., it is nonisotropicd. To proceed we
adopt the hypothesis that, as a function of the orientation of
k, we can boundS0 above and below, as follows:

Ak−c . S0skd . Bk−c, s27d

whereA and B are finite and positive. The validity of this
hypothesis is not to be taken for granted. For the case of the
flow treated in the next section, we will show that Eq.s27d,
in fact, is satisfied. For another case, treated in Ref.f12g, it
appears that Eq.s27d may be violatedsthis has been dis-
cussed inf12gd. Assuming Eq.s27d and proceeding as above,
Eqs.s21d–s24d, we obtain

A

B
I . exps− g0td .

B

A
I , s28d
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whereI is the integral on the right hand side of Eq.s22d. For
large t, Eq. s28d again yields Eq.s26d.

According to Eq.s26d, if a long wavelength mechanism
determines the damping and if hypothesis Eq.s27d is satis-
fied, then, by comparison of Eq.s25d and Eq.s12d, g0 must
be less than the damping rate determined by the short wave-
length mechanism, Eq.s12d. Since these mechanisms are de-
termined in opposite ranges of thek-spectrum there is noa
priori reason thatg0 determined by long wavelength pro-
cesses should always be less thang0 determined by short
wavelength processesfEq. s12dg, or vice versa. We conclude
on this basis that it is reasonable to suspect that either
mechanisms may apply, depending on the configuration of
the flow. That is, subject to the satisfaction of hypothesis Eq.
s27d, the short wavelength result Eq.s12d is applicable if
long wavelength considerations yield a damping rate that
exceeds Eq.s12d. In Sec. IV, we present numerical evidence
that this is indeed the case.

To close this subsection we note the special role of the
variancesSstd=ef2dxd as opposed to higher moments of the
scalarsSpstd=ef2pdx ,p=2,3, . . .d. In particular, our deriva-
tion above relies on Eq.s7d holding even when wave packets
with well-defined wave numbersk i overlap spatially. The
validity of Eq. s7d in this case is a consequence of the or-
thogonality of Fourier modes. A relation like Eq.s7d does not
apply for higher moments, and thus predictions for the expo-
nential damping rate ofSpstd as given in Refs.f3,4g do not
apply to the time asymptotic, strange eigenfunction regime
ssee discussion in Refs.f8,15gd.

B. Wave number power spectrum

We now invert Eq.s25d to obtain the spectral exponentc
in terms ofg0 andGshd. Rewriting the result forg0 we have

min
hù0

hGshd + h − ucuh − g0j = 0. s29d

Since the function in the curly bracket has a minimum of
zero, it is non-negative. Thus multiplying it by any positive
function of h again produces a positive function ofh whose
minimum is zero. Multiplying by 1/h we obtain

min
hù0

hh−1fGshd − g0g + 1 − ucuj = 0. s30d

This gives the spectral exponent for the power-law decay of
S0 with k,

c = ± F1 + min
hù0

HGshd − g0

h
JG . s31d

Since the scalar spectrum propagates from low wave
number to high wave number and is dissipated at high wave
number, it seems physically unreasonable thatc,0 fi.e.,
Sskd increases algebraically withkg. Thus we reject the nega-
tive solution in Eq.s31d. This is consistent with our numeri-
cal results as well as previous studies of the long wavelength
mechanismf6,7,11–13g. Equations31d swith the plus signd
also appears in Ref.f15g by Fereday and Haynes. Similar
results have previously been given for problems involving
the convection of vectorsrather than scalard fields: Ref.f22g

does this for the kinematic dynamo problemsin which case
the relevant convected field is the magnetic fieldd, while Ref.
f23g applies to the problem of the stability of a smooth La-
grangian chaotic fluid flowfin which case the relevant con-
vected field is the fluid vorticityvsx ,td= ¹ 3vsx ,tdg.

Although Eq.s31d was derived under the assumption that
Eq. s26d holds si.e., a long wavelength mechanism is opera-
tived, we note that, when the short wavelength result Eq.s12d
is substituted in Eq.s29d, we obtainc=0, and, asg0 in-
creases from zero to the value given by Eq.s12d, the expo-
nent c decreases from one to zero. This suggests that long
and short wavelength mechanisms should be distinguishable
via examination of the wave number power spectrum of the
passive scalar in the time-asymptotic, strange eigenfunction
regime. In particular, log-log plots for spectra corresponding
to the short wavelength mechanism should be essentially flat
out to k of order kd, while similar plots corresponding to a
long wavelength mechanism should decrease linearly with
the logarithm ofk. Numerical evidence supporting this will
be provided in Sec. IV.

C. Numerical technique for evaluatingg0 from Eq. (12) and c
from Eq. (31)

Equations12d gives the short wavelength mechanismg0
as the minimum offGshd+hg over h, and Eq.s31d gives the
long wavelength mechanismc as one plus the minimum of
hh−1fGshd−g0gj over h. One method of computing these
quantities, employed in Ref.f2g, is to first obtain a numerical
estimate ofGshd and then to perform the minimization. The
computation of numerical approximations toGshd for flows
of the type we examine has been previously performed in
Refs. f2,19g. The technique employed was to first compute
histogram approximations toPsh,td using a large number
sNd of uniformly distributed initial conditions yi si
=1,2, . . . ,Nd to compute many values ofhistd;hsyi ,t2,t1d,
t; t2− t1 from Eq. s9d. Approximations toGshd were then
computed from plots oft−1 lnfPsh,tdg+C, whereC was ad-
justed so that the minimum of the numerical estimate ofGshd
was zero. By varyingN andt, the convergence and accuracy
of these estimates could be crudely judged.

In this paper we use an alternate numerical method for
evaluating the short wavelength mechanismg0 and the long
wavelength mechanismc. This alternate method has been
previously used to numerically calculate similar quantities in
Refs. f23,24g. The alternate method, which circumvents the
need for obtaining a numerical estimate ofGshd, is simpler to
implement and is found to be more accurate and better con-
vergent.

To illustrate the method we first consider the problem of
finding the minimum offGshd+hg si.e., of finding the pre-
diction of the value ofg0 due to the short wavelength mecha-
nismd. Noting from Eq. s10d that the average of exps−htd
over many initial conditions is

kexps− htdl =E Psh,tde−htdh, exph− min
hù0

fGshd + hgtj,

s32d

we employ the following procedure. As before, we first com-
pute many values ofhistd. Then we estimatekexps−htdl as
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kexps− htdlN = N−1o
i=1

N

expf− histdtg, s33d

plot lnkexps−htdlN
−1 versus t, and finally estimate

minhù0fGshd+hg as the slope of this curve. We note that it is
important to ensure thatN is large enough. In particular,

min
hù0

fGshd + hg , h̄, s34d

but as t→`, with N fixed, Eq. s33d will always approach

exps−h̄td, erroneously yielding the estimateh̄. This is be-
cause, as mentioned in Sec. I B 2, in thet→` limit, histd
→ h̄ for almost every initial conditionyi sexcept for a set of
y of Lebesgue measure zerod. ThusN must be made larger as
t is increased. The point is that, with increasingt, the average
Eq. s33d is dominated by a smaller and smaller fraction of
initial conditionsi for which expf−histdtg is much bigger than
its value for the vast majority of other initial conditionsse.g.,
see Ref.f20gd. This same problem is also present when ap-
plying the method based on estimation ofGshd from histo-
grams, but we have found that the alternate method based on
Eq. s33d appears to converge significantly quicker int, and
so this problem is less severe.

Similar considerations can be applied to computec from
Eq. s29d. As done for Eq.s12d, a result analogous to Eq.s32d
is

kexpf− s1 − cdhtgl , exph− min
hù0

fGshd + s1 − cdhgtj.

s35d

Thus, for fixedc s1.c.0d, the larget slope of a plot of
lnhkexpf−s1−cdhtglj−1 versus lnt provides an estimate ofg0

for the long wavelength mechanism. Varyingc we construct
a plot ofg0 versusc, from which, given the damping rateg0,
the spectral power-law exponentc is obtained.

III. THE MODEL FLOW

A. Specification of the velocity field

Our numerical experiments in Sec. IV will be performed
using the following prescribed velocity fieldf1,2g,

vsx,td = Uhx0fstdcosfs2py/Lfd + u1stdg

+ y0f1 − fstdgcosfs2px/Lfd + u2stdgj. s36d

Here the time dependent functionsfstd, u1std and u2std are
defined as follows:

fstd = H1 for nTø t , sn + 1/2dT,

0 otherwise,
J s37d

u1std = an for nTø t , sn + 1/2dT, s38d

u2std = bn for sn + 1/2dT ø t ø sn + 1dT, s39d

wheren is an integer, andan and bn are random numbers
uniformly distributed inf0,2pg, uncorrelated for differentn,

and uncorrelated betweenan andbn. Integrating the flow Eq.
s36d over one time periodT, we obtain a map expressing the
position of a fluid elementsxn+1,yn+1d at time t=sn+1dT in
terms of its positionsxn,ynd at time t=nT,

xn+1 = xn + sUT/2dcosfs2pyn/Lfd + ang, s40ad

yn+1 = yn + sUT/2dcosfs2pxn+1/Lfd + bng. s40bd

The flow Eq.s36d is periodic insx,yd space with a peri-
odicity lengthLf. We take the passive scalar to be periodic
with a periodicity lengthLD=MLf where M is an integer.
That is, the advection-diffusion equationfEq. s1dg will be
solved forvsx,y,td given by Eq.s36d with periodic boundary
conditions on the scalar field,fsx±LD ,y±LDd=fsx,yd. We
note that our choice of a random flow precludes the possibil-
ity of Kolmogorov-Arnold-Moser surfaces and ensures that
fluid trajectories are chaotic and ergodic within the entire
periodic cell, 0øx,LD, 0øy,LD. Furthermore, the im-
posed randomness of the flow simulates realistic typical situ-
ations where fluid instabilities lead to nonperiodic, tempo-
rally chaotic time dependence of the velocity field.

B. Is Eq. (27) satisfied?

We now discuss whether our specified flow configuration,
Eqs.s36d–s39d, will lead to a spectrum satisfying hypothesis
Eq. s27d. If it does, then, as shown in Sec. II, the short wave-
length mechanism result Eq.s12d supplies an upper bound on
thek→0+ damping rateg0. The key requirement in Eq.s27d
is B.0. For the flow in Eq.s36d we note that the random-
ness ofan andbn can be used to guarantee thatB.0. If it
were zero, then the spectrumS0skd would be smaller than
Osk−cd for some particular orientation, or range of orienta-
tions, ofk. Assume this is the case. For largek this says that
in the vicinity of every pointx in the domain the local high
k spectrum is smaller thanOsk−cd in this direction. Now
apply the map Eqs.s40d to the assumed spectrum. Each of
these map applications rotates the angular range of the local
high k spectrum by a random amount that is different at
different pointsx. After several map applications, Eqs.s40d
have the property that the assumed angular range of smaller
thanOsk−cd values of the local spectra can be rotated to any
direction, and these directions are different at differentx.
Thus the assumed range whereS0skd is smaller thanOsk−cd
cannot be maintained and we conclude thatB.0. We have
tested this numerically using the simulations described in
Sec. IV. Figure 1, corresponding tokT/LD

2 =1.09310−9 ssee
curve with this label in Fig. 5d, shows polar plots ofSsk,wd
sk;uk u , tanw;ky/kxd obtained for a single random realiza-
tion of the flowfEqs.s36d–s39dg at a representative instant of
time. These plots are consistent with our supposition that a
range ofw in which Ssk,wd=0 does not occur.

C. Upper bound on g0 for the flow given in Eq. (36)

In this section we find an upper bound to the decay rate of
variance based on the rate at which variance is removed from
the longest wavelength mode present in the scalar. Let
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fnsx,yd denote the passive scalar field at timet=nT. Evolv-
ing this field by the map Eq.s36d we have

f̂n+1sx,yd = fnsx8,y8d, s41d

where x8 and y8 are obtained from the inverse
mapping, y8=y−sUT/2dcosfs2px/Lfd+bng, x8=x−sUT/2d
3cosfs2py8 /Lfd+ang. The transformation Eq.s41d applies in
the casek=0. Thus, it preserves the total scalar variance,
redistributing variance in wave number space. We first con-
sider the effect of Eq.s41d on a scalar which at timen con-
sists of a single Fourier component at the lowest allowed
wave number,

fnsx,yd = An sins2py/LDd, s42d

whereLD=MLf. Equations41d then yields,

f̂n+1sx,yd = An sinH 2p

MLf
Fy − SUT

2
DcosS2px

Lf
+ bnDGJ .

s43d

This function has Fourier wave number components atk
=f2pm/Lf , ±2p / sMLfdg wherem is an integer. Now assume
that a fictitiousk-dependent damping is applied that strongly
dissipates all the Fourier componentsuk u.2p / sMLfd, but
does not damp the Fourier componentuk u=2p / sMLfd. This
results in a passive scalar field, fn+1sx,yd
=e0

Lff̂n+1sx8 ,yddx8 /Lf, or

fn+1sx,yd = AnJ0shdsins2py/LDd s44d

whereh=pUT/ sMLfd and J0shd is the zeroth order Bessel
function. Thus, the variance has decreased by the factor
fJ0shdg2. Since this fictitious damping is much larger than the
molecular diffusive damping used in Eq.s1d with k→0+, we

conclude that given Eq.s42d, Eq. s44d must provide an upper
bound on thek→0+ damping rate,

g0 ø −
1

T
lnfJ0shdg2. s45d

Now, we consider the initial condition used in our numeri-
cal experiments, namely,

f0sx,yd = A0 sinf2psx + yd/LDg. s46d

Because of the form of our map Eq.s36d, at timen=1 the
Fourier components excited from the initial condition Eq.
s46d arek =f±2pmx/Lf ±2p / sMLfd , ±2pmy/Lf ±2p / sMLfdg,
wheremx and my are integers. Furthermore, subsequent ap-
plications of the map again return these same Fourier wave
number components. Thus at any timen, the mode of longest
possible wavelength isk =f±2p / sMLfd , ±2p / sMLfdg if M
ù2. Thus forM ù2 we can proceed in a manner similar to
what was done above. We evolvefn=An sinf2psx
+yd / sMLfdg by the map Eq.s36d to obtain f̂n+1 and then
introduce a fictitious damping to dissipate all but the longest
wavelength Fourier mode inf̂n+1. The resulting scalar field
is given by

fn+1sx,yd = fJ0shdg2fnsx,yd. s47d

Therefore, for the initial condition Eq.s46d, we have the
following upper bound forg0,

g0 ø −
1

T
lnfJ0shdg4. s48d

In addition, forh!1 sM larged, we obtain

g0 ø
h2

T
= 2S 2p

MLf
D2

keff, s49d

where

keff =
1

8
U2T. s50d

This is in agreement with the definitionkeff=ksDxd2

+sDyd2l /2T if sDx2d and sDyd2 are computed from the map
Eq. s36d and the random anglesan andbn are averaged over.
Equationss49d ands50d are also in agreement with Eq.s13d.
Thus while Eq.s48d is an upper bound, it approaches the true
value ofg0 asLD /Lf =M→`. If the upper bound Eq.s48d is
lower than that provided by the short wavelength mechanism
damping rate Eq.s26d, then the short wavelength damping
mechanism does not apply. We conclude that, for the flow
given by Eqs.s36d–s39d and the initial condition Eq.s46d, a
sufficient condition for the applicability of a long wavelength
mechanism is

min
hù0

fGshd + hg . −
1

T
lnfJ0shdg4. s51d

IV. NUMERICAL EXPERIMENTS

We numerically solve the advection diffusion problem for
the flow Eqs.s36d–s39d using a modification in which the

FIG. 1. Polar plot ofSsk,wd; k;uk u, tanw;ky/kx. At eachw the
discrete wave number spectrumskx=2mp /LD ,ky=2np /LDd is av-
eraged over a range ofDk=8 andDw=18°. kT/LD

2 =1.09310−9.
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flow is applied without diffusion for each time step,nTø t
ø sn+1dT, followed by a diffusive step in which the passive
scalar field is diffusively smoothed. In addition, we use the
“lattice method” of Ref.f5g which employs a square grid
representation of the scalar field. There are various ways of
doing this. The particular implementation we use is outlined
in the Appendix. The main point is that, because of the sim-
plicity and parallelizability of this method, computations can
be very fast, and the use of very high resolutions becomes
feasible. For results reported in this section, the initial con-
dition for the passive scalar is taken to befsx ,t=0d
=2 sinf2psx+yd /LDg and we useUT=p in Eq. s40d.

Following the procedures described in Sec. II C, we cal-
culate the theoretical valueg0 for our flow from Eq.s12d by
plotting −lnkexps−htdlN versust in Fig. 2, where we have
consideredN=81922 initial conditions. By measuring the
slope of the curve, the prediction forg0 by the short wave-
length mechanism is estimated to be 0.16.

A. Numerical experiments with LD=Lf

In this case, we will find results consistent with the hy-
pothesis that the short wavelength mechanism applies andg0
is given by Eq.s12d. Figure 3 shows the exponential decay of
the scalar varianceCstd=1/L2ef2dx for different diffusivity
k srefer to the Appendix for the definition ofk in our lattice
modeld. The decay ratesgskd are measured and plotted in
Fig. 4. As expected,gskd decreases withk. At the smallestk
we achieve, which corresponds to a grid of 63104 by 6
3104, gskd is estimated to be 0.17, which is within 6% of
the theoretical values0.16d predicted by the short wavelength
mechanism.

We have tried extrapolating our smallk results tok=0,
but we find that the extrapolated value depends sensitively
on small changes in our numerically determinedgskd and on
the assumed form of the fitting function. For example, using
a three parametersg0,A,Bd fit of our numerical data to the

fitting function gskd=g0+AkB, we obtaing0<0.16, if we
determinegskd by fits to data in Fig. 3 restricted to the range
−20ø ln Cø−10, but we obtain a much lower extrapolated
value using data from the range 75ø t /Tø125. This extreme
sensitivity to the resulting tiny difference ingskd by these
two determinations is indicated by the small values of the
best fitted exponentB se.g., 0.13 in the first cased, corre-
sponding to very steep decrease ofgskd ask→0. Thus, we
view our computational results forgskd as not being defini-
tive, and we seek other means of testing for whether the short
wavelength mechanism is operative.

More definite evidence for the short wavelength mecha-
nism is provided by examining the wavenumber power spec-
trum Ssk,td in the strange eigenfunction regime.Ssk,td is
defined as

FIG. 2. Log-linear plot ofkexps−htdlN
−1 versust. The dashed line

is a linear fit whose slope gives prediction forg0 by the short
wavelength mechanism.

FIG. 3. Exponential decay of scalar variance with time at dif-
ferent diffusivity k.

FIG. 4. Exponential decay rate of the scalar variance at different
diffusivity scircled. The theoretical prediction by the short wave-
length mechanism Eq.s12d is also plottedscrossd. The inset plots
the same data on a different scale.
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Ssk,td =E dk8

s2pd2dsk − uk8ud
uf̃sk8,tdu2

LD
2 , s52d

where f̃sk ,td is the Fourier transform of the scalar field
fsx ,td. In the strange eigenfunction regime,Ssk,td,
exps−g0tdM̄skd f1,2g. Hence, we consider the time-averaged
spectrumSavgskd defined as

Savgskd = kSsk,td/Cstdlt. s53d

Figure 5 shows a log-log plot ofSavgskd versusk for different
k. These curves are obtained by time-averaging in the inter-
val 90ø t /Tø100. For allk, Savgskd is essentially flat out to
the diffusive cutoff scalekd snote in particular the curve for
kT/LD

2 =1.09310−9d. As explained in Sec. II, this indicates
that g0 is determined by the short wavelength mechanism.

To obtain our strongest evidence for the applicability of
the short wavelength mechanism for the caseLD=Lf, we
introduce the following spatial filtering technique. Prior to
performing the advection step and the diffusive smoothing
step on every period, we remove all Fourier components
f̃sk ,td with ukxuøak0 and ukyuøak0 where k0=2p /LD and
a.0. This essentially introduces a very strong long wave-
length damping. Keepingak0/kd fixed skd,1/Îkd, insensi-
tivity of the damping rategskd to a shows that mechanisms
at long wavelengths do not determine the damping, and thus
indicates that the short wavelength mechanism applies. We
employed such long wavelength damping in our numerical
experiments after the initial transients20 periodsd of the vari-
ance decay. Figure 6 shows the scalar variance as a function
of time for five different pairs ofk anda, each with the same
ak0/kd ratio. It shows clearly that at larget, all curves are
more or less parallel to each other, and thus the decay rate
gskd is approximately the same in all cases. Figure 7 plots
gskd versus log2 ÎkT/LD

2 for different values ofa. The dot-
ted lines connect data points with the sameak0/kd ratio. This
result is consistent withgskd being independent ofa given a

fixed ak0/kd and provides very strong evidence thatgskd
is determined by the short wavelength mechanism when
LD=Lf.

B. Numerical experiments with LD.Lf

As described in Sec. I C, the behavior of the system for
the caseLD.Lf can be quite different from that forLD=Lf.
In particular, if LD.Lf, the velocity field varies on scales
smaller than the longest length scale of the scalar field. When
Eq. s51d is satisfied, the long wavelength mechanism must
determine the variance damping rate.

Letting LD=MLf, we study the variance decay for differ-
ent values ofM. Figure 8 plots the damping rategskd as a
function of M for simulations withkT/LD

2 =6.95310−8/M2.
The prediction forg0 by the short wavelength mechanism

FIG. 5. Averaged wave number power spectraSavgskd at differ-
ent diffusivity k.

FIG. 6. Decay of scalar variance under large long wavelength
damping with the ratioak0/kd kept fixed.

FIG. 7. Decay rate of scalar variance at different diffusivityk
and different amountscontrolled byad of long wavelength damping.
The dotted lines connect data points with the sameak0/kd ratio.
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sdotted lined and the long wavelength mechanism upper
bound Eq.s48d sdashed lined are also shown.gskd remains
roughly constant for smallM, and then decreases asM in-
creases forM .3. This result is in agreement with Eq.s51d.
We interpret the fact thatgskd at M =1,2,3 exceeds thek
=0 short wavelength mechanism upper bound as being due
to finite diffusion se.g., see inset to Fig. 4d.

The upper bound Eq.s48d is obtained by removing all the
variance “leaking out” from the longest wavelength Fourier
mode. As can be seen in Fig. 8, forM .3, the upper bound
Eq. s48d is smaller than the short wavelength mechanism
prediction Eq.s12d. Thus, the excellent agreement between
the numerical results and the dashed line in Fig. 8 shows that
the variance decay rate is indeed determined by the processes
at the longest wavelength for largeM. Our numerical results
also support the statement made in Sec. III C that asM
→`, Eq. s48d approaches the true value ofg0. On the other
hand, forM ø3, Fig. 8 shows that the decay rates obtained
from our numerical experiments remain close to the value
predicted by Eq.s12d.

As discussed in Sec. II, the long wavelength mechanism
is associated with a power-law wave number power spec-
trum. Figure 9 shows the time-averaged power spectrum
Savgskd, defined in Eq.s53d, for different values ofM. As
expected, for largeM, the spectrum decreases with increas-
ing k as a power lawSavgskd,k−c, while for smallM, Savgskd
has similar shape as the spectrum shown in Fig. 5 for the
case LD=Lf. For c.0, the Lagrangian stretching theory
gives the relation Eq.s31d betweenc and g0. Using the
technique described in Sec. II C, in particular Eq.s35d, we
can evaluatec theoretically as a function ofg0. The result is
shown as dashed line in Fig. 10. The value ofc drops from
1 to 0 asg0 increases from 0 to the value given by Eq.s12d.
We also measure the exponentc of our numerically obtained
power spectrumSavgskd for different values ofM. The results
are plotted against the corresponding measuredgskd as
circles in Fig. 10. The numerical results agree fairly well

with the theory. The discrepancy is probably due to the small
but nonzero value ofk used in the numerical experiments.

V. CONCLUSION

We consider the advection of passive scalars in chaotic
fluid flows. Two mechanisms that lead to a positive exponen-
tial damping rateg0 of scalar variance in the zero diffusivity
limit are studied:sid the short wavelength mechanism which
is based on Lagrangian stretching theory andsii d the long
wavelength mechanism which involves processes taking
place at the longest length scale of the system.

FIG. 8. Decay rate of scalar variance as a function ofM where
M =LD /Lf scircled. The dotted line is the prediction forg0 by the
short wavelength mechanism and the dashed line is the long wave-
length mechanism upper bound Eq.s48d.

FIG. 9. Averaged wave number power spectraSavgskd for differ-
ent values ofM sFourier modes with zero amplitude are omittedd.
The dashed lines are the linear fits used to estimate the scaling
exponentsc.

FIG. 10. Wave number power spectrum scaling exponentc ver-
sus scalar decay rateg0. The dashed line is the theoretical result
obtained by Eq.s31d. Circles are results from numerical experi-
ments using small but finitek.
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Subject to the satisfaction of hypothesis Eq.s27d, the
damping rate predicted by the short wavelength mechanism
Eq. s12d gives an upper bound forg0. For the particular flow
fEqs.s36d–s39dg that we study, we find that, when the system
length scaleLD is comparable to the length scale of the flow
Lf, our numerical experimentsswhich employ gird size up to
63104 by 63104d provide strong evidence that the short
wavelength mechanism applies andg0 is given by Eq.s12d.
On the other hand, whenLD@Lf, the long wavelength
mechanism applies. For the flow we study, we obtain a suf-
ficient condition Eq.s51d for the applicability of the long
wavelength mechanism.

The two mechanisms can be distinguished, possibly ex-
perimentally, by measuring the wave number power spec-
trum. For small diffusivity, the long wavelength mechanism
produces a spectrum that decreases as a power law, while the
short wavelength mechanism produces a spectrum that is flat
out to the diffusive cutoff scale.

Finally we note that we have very recently received a
preprint of a paper by P. H. Haynes and J. Vannestef25g
which also treats the regimes of applicability of the short and
long wavelength mechanisms of passive scalar decay.
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APPENDIX: NUMERICAL TECHNIQUE

The version of the lattice techniquef1,5g used in Sec. IV
is as follows. Letfn

sp,qd denote the scalar field value at the
grid point sx,yd=spD ,qDd, wherep andq are integers,D is
the grid spacing, and the scalar field is evaluated just after
the nT smoothing stepsSec. IVd. Now we perform the ad-
vection step to obtainfn+s1/2d

sp,qd by sid using the map Eq.s40d to

take the grid pointx=pD, y=qD backward in time to a point
sx8 ,y8d and sii d linearly interpolating thefn from the four
grid points nearestsx8 ,y8d onto sx8 ,y8d. Referring to Fig. 11,

fn+1/2
sp,qd = s1 − ads1 − bdfn

sp8,q8d

+ as1 − bdfn
sp8+1,q8d + s1 − adbfn

sp8,q8+1d

+ abfn
sp8+1,q8+1d. sA1d

This interpolation contributes an amount of large scale
diffusion equal toki =D2/ s6Td. sHere by “large scale” diffu-
sion we mean that for variation off over a scale much larger
than D, the interpolation acts approximately the same as
would diffusion of sizeki.d We next do an additional smooth-
ing of fn+s1/2d

sp,qd to obtainfn+1
sp,qd

fn+1
sp,qd = o

ur u,usuø2

Cur uCusufn+1/2
sp+r,q+sd, sA2d

where we have chosen smoothing coefficientsC0=1/8, C1
=1/4, andC2=3/16. This gives an additional smoothing
contribution to the large scale diffusion ofks=D2/T, so that
the total diffusion isk=ki +ks=s7/6dD2/T. The particular
choice we use for the constants,C0, C1, and C2, has the
property that the smoothing step Eq.sA2d takes the coeffi-
cient of the highest allowed Fourier components on the grid
si.e., expfipx/Dg and expfipy/Dgd exactly to zero.

Note that for the advection step Eq.sA1d fand the
smoothing step Eq.sA2dg the computation of the values of
fn+1/2

sp,qd sfn+1
sp,qdd at grid point sp,qd depends only on values

fn
sp8,q8dsfn+1/2

sp8,q8dd at the previous half step, and is therefore
independent of current values on other grid points. Thus
these computations can be done in parallel, and can be very
fast.
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